Mini-Hopper Type 85A

Installation and Operation Manual

Introduction

The Mini-Hopper Type 85Ax is a high quality single denomination coin dispensing unit. A unique 'jam-free'-Rotary-Disk with an inner ring and the simple mechanical design ensures high reliable, trouble-free and high speed operation.

Current types : 85A a - Ex ($1 \mathrm{c}-1 €$ coins) , $85 \mathrm{~A} \mathbf{b}-\mathrm{Ex}$ (for $2 €$ coins)
85A x - E1 Standard parallel interface, 24 V operation
85A x - E2 for outdoor use, 12-24V operation, coated PCB
85A x - EC1 Serial cctalk interface, 24 V operation

Operation

The Mini-Hopper is available with 2 interfaces: Standard parallel and optionally cctalk.
Standard parallel interface (Type 85Ax-Ex): Coin payout starts by applying 5-24V to the 'Motor Control Inputs'. Pulses indicate the amount of coins dispensed. To stop payout, the control signal must be deactivated within 2 mS after reaching the desired number of dispensed coins. The Mini-Hopper has a build-in intelligent control to prevent any miscounts and motor damage. This requires to keep the 24 V DC supply connected for at least 100 ms after operation, or permanently.
cctalk interface (Type 85Ax-ECx): The hopper is completely controlled via one-wire serial intelligent communication.

Installation

The Mini-Hopper can be mounted directly with $4 x$ M4 screws from the bottom.
Optionally a 'Snap-In'-base-plate is available.

Electrical Interface

* CAUTION: Reversing the polarity of the supply inputs will damage the device !

Pin 1

1	24 V supply
2	OV supply
3	Control - (0V)
4	Control + (+5-24V)
5	Count Out (active HI)
6 (*)	Count Out (active LO)

Power Supply (24V DC +/-10\%):

I Standby $=12.5 \mathrm{~mA}, \quad \mid$ Operating $=500 \mathrm{~mA}, \quad \mathrm{I}$ max. $=1.5 \mathrm{~A}$
Permanent supply is recommended!
Motor Control Input (5-24V DC):

I^{F} at $5 \mathrm{~V}=5.8 \mathrm{~mA}, \mathrm{I}^{\mathrm{F}}$ at $12 \mathrm{~V}=16 \mathrm{~mA}, \mathrm{I}^{\mathrm{F}}$ at $24 \mathrm{~V}=35 \mathrm{~mA}$

- - - - - - - - - - - - - - - - - - - - - - - - -

Coin Count Output (5-24V DC):

$6\left({ }^{*}\right)=\overline{\text { Output }}=$ Low Active
$5=$ Output $=$ High Active
U Pull-up $=5-24 \mathrm{~V}$ DC , I max. $=100 \mathrm{~mA}$

MOTOR STARTS TO ROTATE CONTROL SIGNAL TURNED OFF
(!) Only signals $>25 \mathrm{~ms}$ are valid coin count pulses!

Pinout: cctalk Serial

1	nc
2	nc
3	cctalk Data (RtxD)
4	nc
5	$0 V$ supply
6	24 V supply

cctalk-commands:

Simple Poll	\$FE	(d254)
Req. Equipment Category ID	\$F5	(d245)
Request Product Code	\$F4	(d244)
Request Build Code	\$C0	(d192)
Request Manufacturer ID	\$F6	(d246)
Request Software Version	\$F1	(d241)
Read Opto States	\$EC	(d236)
Request Comm Version	\$04	(d004)
Reset Device	\$01	(d001)
Request Serial Number	\$F2	(d242)
Enable Hopper	\$A4	(d164)
Dispense Hopper Coin	\$A7	(d167)
Request Hopper Status	\$A6	(d166)
Test Hopper	\$A3	(d163)
Emergency Stop	\$AC	(d172)
Req. Hopper Dispense Count	\$A8	(d168)
Address Poll	\$FD	(d253)
Address Class	\$FC	(d252)
Address Change	\$FB	(d251)
Address Random	\$FA	(d250)

$\mathbf{(*)}^{*}$: Pin 6 not available on all models.

Changing Mini-Hoppers coin denomination:

5 Rotary-Disks and 4 different Coin-Guides are covering all Euro coins :

Euro-Coins	Disk	Guide	
1 Cent	170 / T1.9	16 / 26	$\left\langle\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\rangle$
2 Cent	$205 / \mathrm{T} 1.7$	19 / 24	< 0
5 Cent	220 / T1.9	21 / 22	
10 Cent	205 / T2. 1	20 / 23	
20 Cent	$235 /$ T2.5	22 / 21	$\left\langle\begin{array}{l}0 \\ i_{0}^{2} \\ 0\end{array}\right\rangle$
50 Cent	265 / T2.5	19 / 24	$\left\langle{ }^{0}\right.$
1 Euro	$235 /$ T2.5	$20 / 23$	范
2 Euro (*)	265 / T2.5	16/26	$\left\langle\begin{array}{l} 0 \\ 0 \end{array}\right)$

(*) 2 Euro coins with type 85Ab-Ex only

Assembly:

1. Remove the Hopper-Bowl by turning counter clockwise.
2. Exchange Rotary-Disk (no tools required)
3. Unscrew Coin-Guide (Phillips-Screw-Driver)
4. Mount new Coin-Guide as described below
5. Mount Hopper-Bowl

How to mount the Coin Guide:

Example:

Mount this way to set to:

1 Euro coins
(Size 23)

10 Cent coins
(Size 20)

Specifications

(*) at $24 \mathrm{VDC} \pm 10 \%$ operation

Outline Drawing and Mounting

4U GmbH
Kaarster Strasse 75
40670 Meerbusch
Germany
Phone +49 2159 9297-800 www.4ugmbh.de
Fax +4921599297-808 info@4ugmbh.de
Service +492159 9297-801 service@4ugmbh.de

